PostgreSQL 9.6

PGConf,UK 2016
London, UK

Magnus Hagander
magnus@hagander.net

Magnus Hagander

e Redpill Linpro

= Infrastructure services

= Principal database consultant
e PostgreSQL

= Core Team member

= Committer

= PostgreSQL Europe

PostgreSQL 9.6

Development schedule

June 30, 2015 - branch 9.5
July 2015 - CF1
September 2015 - CF2
November 2015 - CF3
January 2016 - CF4

March 2016 - CF5

June 2016 - Beta2!

Current status
Beta 2

e Testing and fixes
e May still be removed
e Please help!

New Features

e DBA and administration

e Developer and SQL features
e Replication and backup

e Performance

Idle In transaction timeout

e Simple: kill idle in transaction sessions

postgres=# set idle_in_transaction_session_timeout = 5000;

SET

postgres=# begin;

BEGIN

postgres=# FATAL: terminating connection due to idle-in-transacti

pg_stat_activity

e Now has much better wait information
e Not just a boolean
e waiting column is now gone

= Update your scripts!

pg_stat_activity

postgres=# SELECT * FROM pg_stat_activity WHERE wait_event IS NOT
-[RECORD 1 J----t---mmmmmmmmmmm e e e o
pid | 4026

state_change 2016-04-14 14:33:10.621561+02

|
walt_event_type | Lock
walt_event | transactionid
state | active

query | select * from a for update;

pg_blocking_pids

e Returns array of pids that are blocking x
e Use on a process in waiting state
= Shows who to blame

postgres=# select * from pg_blocking_pids(4026);
pg_blocking_pids

Utility command progress

postgres=# SELECT * FROM pg_stat_progress_vacuum ;
-[RECORD 1]------ L

pid | 4021
datid | 12407
datname | postgres
relid | 16402
phase | scanning heap
heap_blks_total | 4425
heap_blks_scanned | 27
heap_blks_vacuumed | ©
index_vacuum_count | 0
max_dead_tuples | 291
num_dead_tuples C)

System information

e View: pg_config

= Same info as binary pg_config
e Functions: pg_control_*

= Same info as pg_controldata

Vacuum of frozen pages

e Track all-frozen pages

e Avoid VACUUM on all-frozen pages
= Anti-wraparound autovac
= Manual freeze
= COPY FREEZE

e Much lighter on mostly-read tables

postgres_fdw

e Use remote extensions
= Whitelist per server
= Manually install on remote!
= Use functions/operators locally

ALTER SERVER foo OPTIONS (extensions 'pgcrypto,tablefunc')

New Features

e DBA and administration

e Developer and SQL features
e Replication and backup

e Performance

Phrase searching

postgres=# SELECT plainto_tsquery('quick fox') @@

to_tsvector('the quick brown fox jumped');
?column?

postgres=# SELECT phraseto_tsquery('quick fox') @@

to_tsvector('the quick brown fox jumped');
?column?

Phrase searching

postgres=# SELECT tsquery('quick <-> fox') @@
to_tsvector('the quick brown fox jumped');
?column?

postgres=# SELECT tsquery('quick <2> fox') 0@
to_tsvector('the quick brown fox jumped');
?column?

New Features

e DBA and administration

e Developer and SQL features
e Replication and backup

e Performance

wal_level=replica

e Same as old hot_standby
e archive has been retired
= |f specified, maps to replica

pg_stat_wal_receiver

e On standbys only
o "Mirror" of pg_stat_replication
e /ero or one rows

Replication slots

e pg_basebackup
= Can now create slot
= Only used for replication

e pg_create_physical_replication_slot
= Can now reserve WAL directly

Multiple sync standbys

e Requires more than one server to ack commit
e Increase availability in case of multi-node failure

synchronous_standby_names = 'nodel'

synchronous_standby_names = '3 (nodel, node2, node3, node4)'

synchronous_commit =
'remote_apply'

Waits for full WAL apply on standby
Slower than 'on'

= But not necessarily much

Guarantees data available for slave read
Can be combined with multiple sync

New Features

e DBA and administration

e Developer and SQL features
e Replication and backup

e Performance

Faster time datatypes output

e timestamp, date and time
e Much faster output functions
e Copy up to 2x faster!
= Single table, single column timestamp

Locking changes

e Even more...
e For high concurrency loads
e Also better tracing

Relation extension

e Used to extend by one block

= Much blocking in write intensive loads
e Now extends multiple blocks at once

= 20 * number of waiters

Checkpoint sorting

e |/O at checkpoints no longer random
= Sorted by tablespace
= Then relfilenode
= Then fork
= Then block
e Much more sequential writing

Kernel writeback config

Issues with large write caches

OS would buffer writes "too long"

And flush all at once

= Causing I/O storms

Could be configured on global level

= /proc/sys/vm/dirty_background_ratio etc

Kernel writeback config

e Now configurable in postgresql.conf
e Platform dependent
e Enabled by default on Linux only
= for now
e Usually better to "flush early"
= Exception workload:
o Bigger than shared_buffers
o Smaller than OS cache

Kernel writeback config

e checkpoint_flush_after
= Default: 256Kb

e bgwriter_flush_after
= Default: 512Kb

e backend_flush_after
= Default: 128Kb

postgres_fdw

e Control fetch_size
= Pertable or per server
= (Used to be 100)

postgres_fdw

e Push down joins
= Normal joins
= Not anti/semi
e Push down ordering
= Triggers remote ORDER BY
e Make direct updates and deletes
= No SELECT FOR UPDATE

Parallelism

Parallelism

e CPU intensive workloads
e Previously, single query=single core
e But we have many cores now...

Parallelism

e Many different parts
e Many still remaining
e But already very useful!

Parallel seq scans

e Scan asingle table using multiple workers
e Increase throughput
e Functions can be pushed down
= Filtering functions
= Target functions
= |f marked parallel safe
e Foundation for many others

Parallel aggregates

e Aggregates often CPU-bound

Partial aggregation in worker

-inal combination in parent
Requires aggregate-specific support
= Most built-in

= Except string, json, xml, arrays

= And not ordered-sets

Parallel joins

e Based in parallel seqg scan

e Each "partition" joined individually
= |n a separate worker

e Not all joins
= >0Only NestLoop and Hash
= Other restrictions

Controlling parallelism

e max_worker_processes =n
= Global
e max_parallel_degree =n
= Max perindividual query
= Limited by max_worker_processes

Controlling parallelism

e parallel_setup_cost=n
e parallel_tuple_cost=n
e force_parallel_mode =n

Controlling parallelism

e ALTER TABLE .. SET (parallel_degree = n)
= Default determines by relation size

e ALTER FUNCTION .. PARALLEL SAFE

e ALTER FUNCTION ... COST

Ok, one last thing

Anybody used Oracle?

ORA-01555: snapshot too old

Yup, we have that now

Snapshot too old

e Configured by time

e Terminates old transactions
= |f repeatable_read or higher
= Prevents bloat buildup

e old_snapshot_threshold = <minutes>
= Default is off

postgres=# SELECT * FROM c;
ERROR: snapshot too old

There's always more

e Lots of smaller fixes

e Performance improvements
e etc, etc

e Can't mention them all!

What's your biggest feature?

e Parallelism

e Vacuum freeze

e Snapshot Too Old

e Multiple sync standbys

e postgres_fdw improvements
e Wait/lock monitoring

e Other?

Thank youl!

Magnus Hagander
magnus@hagander.net
@magnushagander
http://www.hagander.net/talks/

This material is licensed
: B (Rl

