
PostgreSQL 9.6
PGConf,UK 2016 

London, UK

Magnus Hagander 
magnus@hagander.net



Magnus Hagander
Redpill Linpro

Infrastructure services
Principal database consultant

PostgreSQL
Core Team member
Committer
PostgreSQL Europe



PostgreSQL 9.6



Development schedule
June 30, 2015 - branch 9.5
July 2015 - CF1
September 2015 - CF2
November 2015 - CF3
January 2016 - CF4
March 2016 - CF5
June 2016 - Beta2!



Current status
Beta 2

Testing and fixes
May still be removed
Please help!



New Features
DBA and administration
Developer and SQL features
Replication and backup
Performance



idle in transaction timeout
Simple: kill idle in transaction sessions

postgres=# set idle_in_transaction_session_timeout = 5000;
SET
postgres=# begin;
BEGIN
postgres=# FATAL:  terminating connection due to idle­in­transaction



pg_stat_activity
Now has much better wait information
Not just a boolean
waiting column is now gone

Update your scripts!



pg_stat_activity
postgres=# SELECT * FROM pg_stat_activity WHERE wait_event IS NOT NULL
­[ RECORD 1 ]­­­­+­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
pid              | 4026
...
state_change     | 2016­04­14 14:33:10.621561+02
wait_event_type  | Lock
wait_event       | transactionid
state            | active
...
query            | select * from a for update;



pg_blocking_pids
Returns array of pids that are blocking x
Use on a process in waiting state

Shows who to blame
postgres=# select * from pg_blocking_pids(4026);
 pg_blocking_pids 
­­­­­­­­­­­­­­­­­­
 {4021}
(1 row)



Utility command progress
postgres=# SELECT * FROM pg_stat_progress_vacuum ;
­[ RECORD 1 ]­­­­­­+­­­­­­­­­­­­­­
pid                | 4021
datid              | 12407
datname            | postgres
relid              | 16402
phase              | scanning heap
heap_blks_total    | 4425
heap_blks_scanned  | 27
heap_blks_vacuumed | 0
index_vacuum_count | 0
max_dead_tuples    | 291
num_dead_tuples    | 0



System information
View: pg_config

Same info as binary pg_config
Functions: pg_control_*

Same info as pg_controldata



Vacuum of frozen pages
Track all-frozen pages
Avoid VACUUM on all-frozen pages

Anti-wraparound autovac
Manual freeze
COPY FREEZE

Much lighter on mostly-read tables



postgres_fdw
Use remote extensions

Whitelist per server
Manually install on remote!
Use functions/operators locally

ALTER SERVER foo OPTIONS (extensions 'pgcrypto,tablefunc')



New Features
DBA and administration
Developer and SQL features
Replication and backup
Performance



Phrase searching
postgres=# SELECT plainto_tsquery('quick fox') @@ 
             to_tsvector('the quick brown fox jumped');
 ?column? 
­­­­­­­­­­
 t
(1 row)

postgres=# SELECT phraseto_tsquery('quick fox') @@
             to_tsvector('the quick brown fox jumped');
 ?column? 
­­­­­­­­­­
 f
(1 row)
    



Phrase searching
postgres=# SELECT tsquery('quick <­> fox') @@ 
             to_tsvector('the quick brown fox jumped');
 ?column? 
­­­­­­­­­­
 f
(1 row)

postgres=# SELECT tsquery('quick <2> fox') @@
             to_tsvector('the quick brown fox jumped');
 ?column? 
­­­­­­­­­­
 t
(1 row)
    



New Features
DBA and administration
Developer and SQL features
Replication and backup
Performance



wal_level=replica
Same as old hot_standby
archive has been retired

If specified, maps to replica



pg_stat_wal_receiver
On standbys only
"Mirror" of pg_stat_replication
Zero or one rows



Replication slots
pg_basebackup

Can now create slot
Only used for replication

pg_create_physical_replication_slot
Can now reserve WAL directly



Multiple sync standbys
Requires more than one server to ack commit
Increase availability in case of multi-node failure

synchronous_standby_names = 'node1'

synchronous_standby_names = '3 (node1, node2, node3, node4)'



synchronous_commit =
'remote_apply'

Waits for full WAL apply on standby
Slower than 'on'

But not necessarily much
Guarantees data available for slave read
Can be combined with multiple sync



New Features
DBA and administration
Developer and SQL features
Replication and backup
Performance



Faster time datatypes output
timestamp, date and time
Much faster output functions
Copy up to 2x faster!

Single table, single column timestamp



Locking changes
Even more...
For high concurrency loads
Also better tracing



Relation extension
Used to extend by one block

Much blocking in write intensive loads
Now extends multiple blocks at once

20 * number of waiters



Checkpoint sorting
I/O at checkpoints no longer random

Sorted by tablespace
Then relfilenode
Then fork
Then block

Much more sequential writing



Kernel writeback config
Issues with large write caches
OS would buffer writes "too long"
And flush all at once

Causing I/O storms
Could be configured on global level

/proc/sys/vm/dirty_background_ratio etc



Kernel writeback config
Now configurable in postgresql.conf
Platform dependent
Enabled by default on Linux only

for now
Usually better to "flush early"

Exception workload:
Bigger than shared_buffers
Smaller than OS cache



Kernel writeback config
checkpoint_flush_a�er

Default: 256Kb
bgwriter_flush_a�er

Default: 512Kb
backend_flush_a�er

Default: 128Kb



postgres_fdw
Control fetch_size

Per table or per server
(Used to be 100)



postgres_fdw
Push down joins

Normal joins
Not anti/semi

Push down ordering
Triggers remote ORDER BY

Make direct updates and deletes
No SELECT FOR UPDATE



Parallelism



Parallelism
CPU intensive workloads
Previously, single query=single core
But we have many cores now...



Parallelism
Many different parts
Many still remaining
But already very useful!



Parallel seq scans
Scan a single table using multiple workers
Increase throughput
Functions can be pushed down

Filtering functions
Target functions
If marked parallel safe

Foundation for many others



Parallel aggregates
Aggregates o�en CPU-bound
Partial aggregation in worker
Final combination in parent
Requires aggregate-specific support

Most built-in
Except string, json, xml, arrays
And not ordered-sets



Parallel joins
Based in parallel seq scan
Each "partition" joined individually

In a separate worker
Not all joins

>Only NestLoop and Hash
Other restrictions



Controlling parallelism
max_worker_processes = n

Global
max_parallel_degree = n

Max per individual query
Limited by max_worker_processes



Controlling parallelism
parallel_setup_cost = n
parallel_tuple_cost= n
force_parallel_mode = n



Controlling parallelism
ALTER TABLE .. SET (parallel_degree = n)

Default determines by relation size
ALTER FUNCTION .. PARALLEL SAFE
ALTER FUNCTION ... COST



Ok, one last thing
Anybody used Oracle?



ORA­01555: snapshot too old

Yup, we have that now



Snapshot too old
Configured by time
Terminates old transactions

If repeatable_read or higher
Prevents bloat buildup

old_snapshot_threshold = <minutes>
Default is off

postgres=# SELECT * FROM c;
ERROR:  snapshot too old



There's always more
Lots of smaller fixes
Performance improvements
etc, etc
Can't mention them all!



What's your biggest feature?
Parallelism
Vacuum freeze
Snapshot Too Old
Multiple sync standbys
postgres_fdw improvements
Wait/lock monitoring
Other?



Thank you!
Magnus Hagander 

magnus@hagander.net 
@magnushagander 

http://www.hagander.net/talks/

This material is licensed


